THE POWER OF GO

TOOLS

“Superb and weII written”

< : ,,v/ b
N 174
v
-~
Nl
/ -
-
<% °
Y=

Go 1.22

BUILDING DELIGHTFUL SOFTWARE IN GO

JOHN ARUNDEL




7. Commands

This is the Unix philosophy: Write programs that do one thing and do it well.
Write programs to work together. Write programs to handle text streams, because
that is a universal interface.

—Doug Mcllroy, quoted in Peter Salus’s “A Quarter Century of Unix”

In previous chapters we’ve used Go to create executable commands that users can run
on their systems, such as words or 1ines. That’s great, but what if we wanted to run
such a command from within a Go program itself? What would that look like?

The exec package

For example, suppose we want to run the command 1s to list the files in the current
directory. When we ask the shell to run that command, it makes a call to the operating
system kernel to start a new process. There’s more work involved in this than you might
think.

What even is a process?

The kernel first allocates some memory to store the process’s context and other house-
keeping information about it. Then it loads the specific executable file we requested

119


https://amzn.to/3tzOHTf

(something like /bin/1s), which means copying its bytes from disk into memory. Fi-
nally it starts executing the machine code instructions at the beginning of the program.

So the kernel-level API for running a command needs to take at least the path to the
executable, and in practice there are a few more arguments.

On Unix-like systems, there’s some environment (a set of key-value pairs storing inform-
ation the program might need) for the process, possibly some command-line arguments,
and also some file descriptors: byte streams allowing the program to read input and
write output in a standard way.

This sounds like a lot of paperwork, and while we could do it (using the os.StartProcess
standard library call), we'd prefer not to. So it’s good to know that there’s a higher-level
API provided by the os/exec package.

Let’s see how that works in a Go program with our 1s example:

package main

import (
"os/exec"

func main() {
cmd := exec.Command("/bin/1s")
cmd.Run ()
}
First we call exec.Command with the path to some executable (/bin/1s). If the 1s ex-

ecutable is in a different place on your system, you’ll need to use a different path here
(use whereis 1s to find it).

This returns a value of type *exec.Cmd, and we assign it to the variable cmd. Note that
nothing has actually happened so far: we haven't started a new process yet, just created
the abstraction we’ll use to control it.

Calling the command’s Run method is what actually causes the kernel to create a new
process, load the 1s executable, and run it. If we run this Go program, then, we should
see just one file listed: the main. go file containing its source code. Let’s try.

go run main.go

Hmm. Nothing happened. In fact, the 1s command worked perfectly well, but we have
no way of knowing that, because we didn't see its output.

120



Managing command output

We said earlier that the Unix process model includes input and output file descriptors:
the equivalent of os.Stdin and os.Stdout (and os.Stderr) in Go. And an exec.Cmd
has fields for these to be attached, but we didn't attach anything, so the output of 1s
went... nowhere.

We'll need to attach something to cmd . Stdout in order to see that output. If we attach
os.Stdout, for example, we should see it printed to the terminal:

func main() {

cmd := exec.Command("/bin/ls")
cmd.Stdout = os.Stdout
cmd.Run()

¥

go run main.go
main.go

That’s more like it! In practice, when we'’re running external commands from a
Go program, we usually want to capture that output somehow: for example, in a
bytes.Buffer. But this is enough to prove the concept.

Can we do more? How about passing arguments to the command, for example?

It turns out that exec . Command is variadic: it takes any number of strings after the
first, and interprets them as arguments to be passed to the command.

func main() {

cmd := exec.Command("/bin/1s", "-1", "main.go")
cmd.Stdout = os.Stdout
cmd.Run()

¥

Here’s the output:

-rw-r--r-- 1 john staff 127 30 Sep 15:46 main.go

When not to use exec

Although it makes a neat demo, we wouldn't actually want to run the 1s command from
a Go program: that functionality is much better implemented in Go itself, and we've
seen how to do it in the chapter on filesystems.

Similarly, there’s no benefit in shelling out (that is, invoking a subprocess) to run stand-
ard file-management commands such as mkdir, touch, rm, and so on. All of these
things are either already available in the standard library, or easy to write in Go. Don't

121



shell out to an external command whose functionality is easily replicated in native Go
code. That just adds an unnecessary dependency.

Suppose we wanted to do something a bit more advanced, though, such as triggering

a Kubernetes deployment with kubect1l, or creating a cloud virtual machine with the
gcloud, aws, or az commands. Would this be a good case for running external com-
mands from Go?

Not really. Apart from the dependency issue that we already discussed, complicated
programs like kubectl tend to change over time. New flags and verbs are added, old
ones deprecated, and the behaviour of the program can change radically.

A new version of kubectl could easily cause your Go program to stop working prop-
erly. And since we usually want the output from such tools, we have to parse it to get the
information we need, and that’s equally fragile.

Tiny changes in the output format of external commands can completely break pro-
grams that rely on them, and this kind of thing isn’t easy to test automatically.

A better approach is to look for a Go package that provides the same, or similar func-
tionality to the command-line tool. Often, the CLI tool itself will use that package to
implement what it does.

For example, this is the complete main function for the kubectl tool, which I'm sure
we will all agree does a lot:

func main() {
command := cmd.NewDefaultKubectlCommand ()
if err := cli.RunNoErrOutput(command); err != nil {
// Pretty-print the error and exit with an error.
util.CheckErr(err)

}
(kubectl.go)

It doesn’t look like there’s much code here, but that’s the point: this minimal main
function just calls into the accompanying c1i package to do the actual work. And if
kubectl can use that package, so could we.

All the important machinery of kubectl, then, is in Go packages that we can import
and use in our own programs, which is sensible. Anything the kubectl binary can do,
we can do too, using pure Go, and without fragile dependencies on external commands.

We've worked hard throughout this book to design programs with a “minimal main”,
and now that we’re looking at other people’s programs from the user’s point of view, we
can see why that’s so valuable. main can't be imported into any program, so it shouldn’t
do anything that might be useful to others.

122


https://github.com/kubernetes/kubernetes/blob/master/cmd/kubectl/kubectl.go

When to use exec

There are legitimate use cases for running external commands from Go. For example,
the purpose of the Go program might be to run such a command, perhaps to automate
some process that’s currently done manually.

It may not be practical or desirable to completely replace this command with a Go pro-
gram, or at least not yet, so the compromise option is to execute it from Go for the time
being.

And there isn’t always a convenient Go SDK or package that we can use to get the same
functionality that the command provides. For example, the command might be writ-
ten in C, or use a C shared library. If this is the only implementation of the necessary
behaviour that exists, then we have no choice but to use it, or write our own.

While we can use the cgo interoperability layer to call C functions from Go, that’s al-
ways a last resort, and greatly complicates our programs. In such a case, it would be
better to use exec to run some command instead, despite the disadvantages that we’ve
already discussed.

Migrating from shell scripts to Go

It's sometimes said that the internet is held together with shell scripts and duct tape,
and it’s certainly true that a great many organisations depend on some rather fragile
and ancient (and almost certainly buggy) shell scripts. While the shell is a great tool for
one-shot tasks and rapid prototyping, it’s not ideal for developing robust, maintainable
software over the long term.

Why use Go to run commands?

It’s possible to write and maintain relatively robust shell programs, but it’s uphill work.
Just use Go instead. Go is a much better language for this job, so many important pro-
grams that were once made of duct tape are now being migrated to Go.

When the program is a script that simply executes a bunch of Unix commands, for ex-
ample, the first step on the migration path may well be to replace it with a Go program
that uses exec to run the same bunch of commands.

That may not sound like a big improvement, but we can do a lot from this position. We
can write unit tests, and use Go for things like text processing, instead of relatively awk-
ward grep, awk, and sed commands.

I'yield to no one in my admiration of things like awk, and even Perl: they’re terrific at
doing what they do. What they don’t necessarily do well is communicate data to and
from other tools, except in the very simple byte-oriented way provided by the Unix API.

In other words, we can pipe lines of text in and out of tools, but we can't easily do com-
plex filtering, logic, or manipulation. That’s a job for a programming language. Luckily,
we have one.

123



A command wrapper in Go

When we need the behaviour provided by proprietary or other closed-source programs,
especially if they're only available as executable binaries, we may have no alternative
but to use exec.

The pmset command

For example, suppose we want to get the current battery charge status on a Mac. We
can do this easily on the command line with the OS-specific pmset command:

pmset -g ps

Now drawing from 'AC Power'
-InternalBattery-0 (id=10879075) 98%; charging;
0:42 remaining present: true

Getting this information from a Go program is not so straightforward, though. How
does pmset do it? Looking at the C source code for this command, we find that it gets
the data by making a system call to the macOS kernel.

While we could make the same system call from a Go program, this is likely to involve a
lot of paperwork; probably more than we'd care to do just to get the battery status.

Although we don’t want to use external commands when it’s easy to replicate their func-
tionality in Go, that’s not the case here. Running the pmset command makes our Go
program much simpler than it would be if we tried to implement the same behaviour
ourselves.

Since the pmset command is part of macOS, it’s fairly safe to assume we’ll be able to ex-
ecute it on any Mac. To put it another way, executing the command is no less portable
or reliable than making the equivalent system call. And the output doesn’t look too diffi-
cult to parse.

What can we test?

Let’s see how to approach writing a pmset wrapper in Go. This will be a Go package that
users can import and call some function to get the current battery status, without hav-
ing to worry about how that actually works under the hood.

If you're not using macOS, just substitute some equivalent command, such as acpi on
Linux, or powercfg on Windows, and make the appropriate tweaks to the code as you
go. The logic will be roughly the same whatever command you’re using.

Go ahead and create a new folder for this project (you might call it battery, for ex-
ample). Now, what’s the first test we should write?

Suppose what we want is some Go function that will give us the current charge status of
the battery. You might find it difficult to think of any test that you could write for this:
how can you know in advance what the correct battery charge status will be?

124



Any function that returns dynamic information based on some external conditions
can’t be tested by comparing its result directly against expectation. We need to think
harder.

Throughout this book we've been asking the question: what behaviour are we really test-
ing? So what’s the answer here?

It’s tempting to answer “The function correctly gets the battery status”, but that’s wrong.
The “getting the battery status” behaviour isn’t actually in our code; it’s in the pmset
command. So what does our code do, then?

Breaking down behaviour into chunks
The behaviour we’re really testing in this case is in two parts:

1. We execute the pmset command with the correct arguments
2. We correctly parse the pmset output to get the battery status

When you frame it this way, it’s easier to see how to test these two chunks of behaviour,
isn't it? The “output” of the first one is simply a string representing the appropriate pm-
set command line.

The “input” of the second behaviour is some string representing the kind of text that
pmset prints out when you run it, and its output is whatever battery information we
manage to parse from it.

In between these two steps there’s some hidden stuff that’s outside our code: basically,
everything pmset does. And we'’re not interested in testing pmset, so we can focus en-
tirely on the two things our code does.

In this case, the first behaviour is trivial, since the required command line is always the
same: it’s just pmset -g ps. No need to test that we can produce this string. We can
imagine situations where this could be more complicated, and would need testing, but
let’s consider this one solved for now.

An otherwise hard-to-test function can often be broken down into sub-behaviours, each
of which can be refactored out to a testable function. We can then trivially compose
these behaviours into a single function that users can call.

Parsing command output

The second behaviour needs a little more thought. First, we’ll need some test input.
The best test data is always the real data, so let’s use pmset to generate it, and pipe the
output to a file in the testdata folder.

mkdir testdata

pmset -g ps >testdata/pmset.txt

As we saw earlier, the result will be something like this:

125



Now drawing from 'AC Power'
-InternalBattery-0 (id=10879075) 98%; charging; 0:42
remaining present: true

So that’s the input to our parsing function; what output do we want? Well, there are sev-
eral useful pieces of information we could glean from this text, such as the AC power
status, the battery ID, its charge percentage, and the charging time remaining.

That’s too much fun for one chapter. Let’s just focus on the charge percentage for now:
if we can extract that, presumably we can extract the other things the same way. We'd
like to avoid being tempted into solving more problems than we strictly need to.

Without worrying yet about exactly how we’re going to get the charge number, we can
certainly write a test for the function that does it. Take a minute and try to sketch out a
suitable test.

GOAL: Write a test for the “parse pmset output for battery charge percentage” beha-
viour. Use the real output from pmset -g ps as your test data.

HINT: First, what input will the function need to take? Well, what we’ll have is a string,
since the output from pmset is plain text, so a string parameter sounds reasonable.

What about outputs? The most useful thing would be a number representing the battery
charge percentage, so we could have the function return an int. pmset doesn’t report
fractional percentages, so int will be fine.

But, thinking ahead a little, we can see that there might be other information we’ll want
to extract from the data in future. Can we leave room in our API for this?

We'd like to avoid changing the signature of our function, as this would break any user
code that calls it. Instead, it'll be convenient to have some struct type representing

all the information we want to know about the battery status. We can always add new
fields to it, without making breaking changes to our public API.

So let’s define a want variable of this struct type, whose only field (so far) is the charge
percentage. To be unambiguous, then, let’s name it ChargePercent.

And the rest should be straightforward: call the function, and compare the result we
got against want in our now-familiar way.

Testing the parsing function

SOLUTION: Here’s my attempt at this:

func TestParsePmsetOutput_GetsChargePercent(t *testing.T) {
t.Parallel()
data, err := os.ReadFile("testdata/pmset.txt")
if err != nil {
t.Fatal(err)

126



}
want := battery.Status{
ChargePercent: 98,
}
got, err := battery.ParsePmsetOutput(string(data))
if err != nil {
t.Fatal(err)
}
if !cmp.Equal(want, got) {
t.Error(cmp.Diff (want, got))

}
(Listing battery/1)

This looks pretty much like most of the other tests we've written, which makes it
straightforward to understand. We read the test data, call our parse function, and
compare want against got.

What’s want? Our pmset output text shows a charge percentage of 98, so that’s the
ChargePercent we should expect.

ParsePmsetQOutput needs to return an error as well as the Status struct, because
clearly parsing can fail: we might not be able to make sense of the input if its format
has changed, for example.

Parsing command output

Let’s write a null implementation of ParsePmsetOutput and check that we get the ex-
pected test failure:

- ChargePercent: 98,
+ ChargePercent: O,

Good. This time, the test was the easy bit, and the implementation might be more chal-
lenging. Let’s see.

GOAL: Implement ParsePmsetOutput.

Clarifying the problem

HINT: This needs a little thought. Let’s clarify the problem statement. We’re expecting
input similar to our test data:

Now drawing from 'AC Power'
-InternalBattery-0 (id=10879075) 98%; charging; 0:42
remaining present: true

127


https://github.com/bitfield/tpg-tools2/blob/main/battery/1/battery_test.go

And we want to be able to extract the charge percentage: in this case, the value 98. How
could we do that?

It’s not a case of simple string matching, unfortunately. We don’t know the value in ad-
vance, so we can't search for it.

The value isn'’t always at the same byte position in the text, either, so we can't just read
bytes 63-64, or something like that. We can’t even rely on counting words to get to the
text we want, since presumably the part about “drawing from ‘AC Power’” could change
to something else.

What could we do?

SOLUTION: Some programmers, when confronted with a problem like this, think “I
know, I'll use regular expressions!” (Now they have two problems.)

What kind of regular expression would work here? Well, the thing we want is a sequence
of digits, but there’s more than one such sequence in our example. Can we narrow it
down a bit more?

Writing a regular expression

On closer inspection, it seems that there’s only one digit sequence followed by a % char-
acter, so we can try to match that.

Here’s a regular expression that will match one or more digits followed by a %:
[0-9]+7%

What can we do with that in Go? Here’s an example:

r := regexp.MustCompile("[0-9]+%")

result := r.FindString("the charge is 98%")

Our real string is different, but this simpler version will make it easier to see what’s go-
ing on. First, we compile the regular expression, which is like a mini-program, to get
some value r that we can use. Then, we call its FindString method with our input
text.

FindString returns the first string that completely matches the specified regular ex-
pression, so in this case that’s:

98%

Great, but we only want the 98, not the trailing %. We need to match the % character,
to make sure we’ve got the right digit sequence. But once we have it, we then want to
extract only the digits from it.

We can do this by adding parentheses to our regular expression, to create a capturing
group:

128


http://regex.info/blog/2006-09-15/247

([0-91+)%

If this expression matches a chunk of text, then we’ll be able to extract just the contents
of the capturing group: the part inside parentheses. Here’s what that looks like:

r := regexp.MustCompile (" ([0-9]+)%")
matches := r.FindStringSubmatch("the charge is 98%")
Whereas FindString only returns the entire matched string, FindStringSubmatch

returns a slice of strings. The first element of this slice is the entire matched string, as
before, but the second is the contents of the capturing group.

If we had more groups in the regular expression, then there would be extra elements in
this slice, each holding the contents of the corresponding group. But as it happens, we
only have one group, so the matches slice contains exactly two elements:

[“98%“ s “98“]

The second element is the one we want, and we can use the index expression
matches[1] to get it. Once we have that string, we feel confident that we can use
something like strconv.Atoi to turn it into an integer.

Now we have a plan. So how can we put all this together to implement ParsePm-
setOutput?

Using the regexp

It happens that the MustCompile operation is relatively expensive, compared to the
actual string matching. But compilation only needs to be done once per program run,
so we can do it at package level, in a var statement.

If the call to MustCompile were instead inside our parsing function, then the regexp
would be recompiled every time the function is called, which is unnecessary. Once we
have the compiled value, we can use it to match against any number of input strings
relatively cheaply.

Here’s my version of the function, then:

var pmsetOutput = regexp.MustCompile("([0-9]+)%")

func ParsePmsetOutput(text string) (Status, error) {
matches := pmsetOutput.FindStringSubmatch(text)
if len(matches) < 2 {
return Status{}, fmt.Errorf("failed to parse pmset \
output: %q", text)

}
charge, err := strconv.Atoi(matches[1])
if err != nil {

129



return Status{}, fmt.Errorf("failed to parse charge \
percentage: %q", matches[1])
+
return Status{
ChargePercent: charge,
}, nil
}
(Listing battery/1)

Having used the compiled pmsetOutput regexp to test the input for matches, we now
need to check whether or not it actually matched. If it did, we should have the contents
of the capturing group, so there will be at least two elements in matches. We can check
len(matches) and return an error if this isn't the case.

Note that we include the output that we couldn’t parse: just saying “failed to parse”
would be no help, either to the user or the developer. Including the unparsable text in
the error message takes only a few more keystrokes, but makes a big difference to the
usefulness of the error.

Now we know that we successfully extracted the string of digits we need, we can call
strconv.Atoi to turn it into an integer value. This returns error, because not all
strings represent valid integers. We feel pretty sure that ours will, but again, let’s not
take chances. So we check that error too.

Finally, we have the int value we need, so we can construct a suitable Status literal
and set its ChargePercent field to the value we calculated.

Let’s try the test again:
PASS

Mischief managed! We can now feel confident that, given some genuine pmset output,
we can extract the battery status from it.

We can turn our attention, then, to the other part of the task: getting that output in the
first place. We can imagine some function GetPmsetOutput that runs pmset using
exec and returns its output as a string.

But there’s a problem. If we're not allowed to execute external commands in a unit test,
how can we possibly write a unit test for such a function?

We can't, clearly. But unit tests aren’t the only kind of tests we can write.
Integration tests

A unit test, as the name implies, tests some unit of your code, such as a function, usu-
ally in isolation. Its job is to verify that the function’s logic is correct, so it tries to avoid
using any external dependencies, such as commands.

130


https://github.com/bitfield/tpg-tools2/blob/main/battery/1/battery.go

The job of an integration test, on the other hand, is to test what happens when we do use
those external dependencies. It validates our assumptions about how they work: for
example, that we execute the right command in the right way.

Why isolate integration tests?

Why make a distinction between these two kinds of tests? Well, unit tests need to be
fast and lightweight, because we run them very often, and the only time they should
fail is when something’s wrong with our code.

We don't need to run integration tests so often, though, because the only way they could
break is if something external changed: the pmset command was updated or removed,
for example.

Unit tests check a program’s behaviour given certain assumptions about external de-
pendencies. Integration tests check those assumptions are still correct. So it doesn’t
matter if integration tests are relatively slow, or use external dependencies, as long as
we can figure out a way to avoid running them every time we run unit tests.

Build tags
One common way to control the execution of integration tests is to use a build tag.

A build tag is a special comment in a Go file that prevents it from being compiled unless
that tag is defined. There are some predefined build tags: for example, the tag windows
is defined if we’re building on Windows. Similarly, darwin and 1inux indicate macOS
and Linux.

Here’s what specifying a build tag looks like in a Go file. It needs to be the first line in
the file, and be followed by a blank line before the package declaration:

//go:build darwin

package

We could use this mechanism to provide OS-specific implementations of a certain piece
of code, for example. We would write the macOS version in a Go file protected by the
darwin build tag, the Linux version protected by 1inux, and so on.

But we can also define arbitrary build tags of our own. Suppose we put the following at
the beginning of a new Go file:

//go:build integration
package battery_test

Now this file will be ignored by the Go tools unless the integration tag is defined,
and under normal circumstances it won't be, because it’s not one of the predefined

131



tags. If the file contains tests, they won't be run by the go test command. If it con-
tains implementations, they won't be built by go build, and so on.

So suppose we write some test for GetPmsetOutput and we put it in its own Go file,
protected by the integration build tag. It won'’t be run by go test, which is what we
want, but then how do we run it when we want to?

The answer is that you can supply arbitrary build tags to the go test command, so we
would run something like this:

go test -tags=integration

Now that tag is defined, so the file will become visible to Go, and the test will be run.
But if we don’t supply that tag on the command line, it won't.

Testing the command runner

What integration test should we write? We know we’re going to call GetPmsetOut-
put, and that that function will execute the pmset command. Fine. So what can we
test about it?

Well, another way to phrase that question is to ask “What could fail?” Clearly, running
the command could fail for a number of reasons, most likely that the command doesn’t
exist or has a different path.

If we ran this test on some non-macOS machine, for example, it would presumably fail.
So that’s one thing we can check. In that case we'd get an error something like this:

fork/exec /usr/bin/pmset: no such file or directory

If this happens in the test, we could do some work to make the test failure friendlier.
For example, we could check the value of runtime.GO0S, which tells us what operating
system Go thinks it’s running on. If it’s something other than darwin, we could report
a failure like “This test will only work when run on macOS and when /usr/bin/pmset
is available”

That’s getting a bit fancy, though, so for now we’ll just skip the test, using t . Skip, if we
can’t run the pmset command for whatever reason.

There’s one other sanity check we need. Even if pmset is available, on machines
without batteries (a Mac mini, for example), it won’t report anything useful to us. So if
we don't find the string InternalBattery in the output from pmset, we should also
skip this test.

Now it’s reasonably safe to call the function under test, so what should we test about
it? GetPmsetOutput returns a string, so we could test that the string isn’t empty, but
that doesn’t prove much. Can we do more? We don’t know in advance what the string
actually is, so we can’t simply compare it against a string literal.

But there’s something else we can do with it. We can pass it to ParsePmsetOutput.

132



After all, if we executed the pmset command correctly, then its output should be par-
seable without error, shouldn't it?

So we can check the error value, but is there anything useful we can test about the res-
ulting Status struct? Not really, it turns out.

We could look at the ChargePercent field and see if it has the default value 0, indicat-
ing it hasn’t been set. But the battery might really be 0% charged, in which case we'd get
a bogus test failure for code that’s actually correct.

In any case, we don't actually need to check the result at all. If ParsePmsetOutput
doesn’t return error, then the result is valid by definition. And we know that function
works, because it has its own test.

We're not testing the parsing here, just using it to check that pmset returned something
parseable. If this is indeed the case, then we feel we can’t have messed up too badly in
executing it. So we’ve done enough for now.

Here’s the test, then:

//go:build integration
package battery_test

import (
"testing"

"github.com/bitfield/battery"

func TestGetPmsetOutput_CapturesCmdOutput(t *testing.T) {

t.Parallel()

data, err := exec.Command("/usr/bin/pmset", "-g", "ps").
CombinedOutput ()

if err != nil {
t.Skipf ("unable to run 'pmset' command: %v", err)

}

if !'bytes.Contains(data, [Ibyte("InternalBattery")) {
t.Skip("no battery fitted")

}

text, err := battery.GetPmsetOutput ()

if err != nil {
t.Fatal(err)

133



status, err := battery.ParsePmsetOutput(text)

if err != nil {
t.Fatal(err)
}
t.Logf ("Charge: %d%%", status.ChargePercent)
}
(Listing battery/1)

Even if there’s no error from parsing the pmset output, it would be nice to know what
value is actually being parsed, so we pass that to t.Logf. The output from this won’t
be printed unless the test fails, or unless we run go test with the -v flag to enable
verbose mode.

Running the command

If we supply a null implementation of GetPmsetOutput, we should be able to run this
test and see it fail:

go test -tags=integration

--- FAIL: TestGetPmsetOutput_CapturesCmdOutput (0.00s)
battery_integration_test.go:19: failed to
parse pmset output: ""

Capturing output

Good. Now, how do we implement GetPmsetOutput? You already know how to use
exec.Command to create a command object, and Run to run it. How can we get its out-
put as a Go value?

In our 1s example, we set the Stdout field on the command to send its output some-
where. We could use something like a strings.Builder to capture it, but there’s an
easier way.

The command object has an Output method that runs the command and returns its
output as a string. In fact, it'll be handy to get the standard error stream, too.

We can get both standard output and standard error in one string, by calling Combine-
dOutput. Here’s what that looks like:

func GetPmsetOutput() (string, error) {
data, err := exec.Command("/usr/bin/pmset -g ps").
CombinedOutput ()
if err != nil {

return "", err

134


https://github.com/bitfield/tpg-tools2/blob/main/battery/1/battery_integration_test.go

¥

return string(data), nil

}

(Listing battery/1)

This should pass the test, so let’s try:

go test -tags=integration

fork/exec /usr/bin/pmset -g ps: no such file or directory

Oops. The command line is correct, as a single string, but that’s not actually how you
pass it to exec . Command.

It needs to be broken up into individual strings, one for each command-line argument:
data, err := exec.Command("/usr/bin/pmset", "-g", "ps").
CombinedQOutput ()

Good thing we wrote that integration test, or we might not have spotted that bug until
we ran the program for real.

Let’s try again:

go test -tags=integration -v

battery_integration_test.go:21: Charge: 100%
--- PASS: TestGetPmsetOutput_CapturesCmdOutput (0.02s)

Not only does this pass, but thanks to the -v flag, we can spy on the charge percentage
value we passed to t.Logf:

Charge: 100%

There’s more we could do with this package, of course, but it’s a good start. Some pro-
grammer out there will be glad that we provided a straightforward way for them to get
the battery status in Go code. Otherwise, they'd have to do what we did: work out what
command to run, exactly how to invoke it, parse its output, and so on.

When to import a third-party package

It’s worth saying a word or two about what to do when you have some problem that isn't
trivially solved by the standard library, like the battery status example. This happens a
lot, so how should we think about the right way to proceed?

The first thing would be to look for some existing third-party package (on pkg.go.dev,
for example). If there’s already a pure Go package that does exactly what we need, then
that’s wonderful—providing its licence allows us to use it, naturally.

135


https://github.com/bitfield/tpg-tools2/blob/main/battery/1/battery.go
https://pkg.go.dev/

It sometimes happens, though, that the best we can find is something that’s close to
what we want, but not a perfect match. We may need to do a fair bit of paperwork to
get the package to solve our problem, and at that point it’s worth questioning whether
we should import the package at all.

If we can import a package to save writing ten lines of Go code, but it takes ten lines to
use the package, then there’s no real benefit from importing it. It might be better just to
copy the piece of code that we need directly into our program.

If importing some package makes your program simpler, in other words, then import
it. If it doesn’t, don’t.

We need to keep in mind that imports aren’t free. Every extra dependency for your pro-
gram complicates the code, slows the build process, and adds to the list of things that
could break your build for one reason or another.

Maybe the package pushed a breaking upgrade, or introduced a critical bug, or maybe
it was just deleted altogether. Every import is a potential point of failure.

Even if we’re copying code rather than importing it, we’re still introducing a foreign
object into our program that could contain bugs. If it doesn’t have its own tests that we
can copy, we should cover it with tests.

We can'’t just take the attitude that if something is on GitHub or StackOverflow, it must
be fine. That’s very much not the case, as a brief inspection of those sources will con-
firm.

Go adoption is growing rapidly, after all, so statistically most Go programmers must
be relative beginners. By extension, most Go code we find in the wild won't be all that
good.

That doesn’t mean we should never use “found code”: it just means we shouldn’t as-
sume it’s necessarily a model of good Go style, or even that it works at all.

Going further

If you feel excited and inspired to write some interesting Go programs that execute ex-
ternal commands, or even if you don't, here’s one suggestion.

e Write a command in Go that times how long it takes to execute some other com-
mand. For example, you could use it like this:

howlong sleep 1
(time: 1.007s)

howlong backup.sh

(time: 1h14m2s)

136



Make sure the substantive functionality is part of an importable package, so other
people can use your code in their own programs.

If you get stuck, take a sneak peek at my suggested solution in listing howlong/1.

137


https://github.com/bitfield/tpg-tools2/blob/main/howlong/1

